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LETTER TO THE EDITOR 

Cluster approximation for the contact process 

E Ben-Naim and P L Krapivsky 
Center for Polymer Studies and Department of Physics, Boston University, Boston, MA 02215, 
USA 

Received 5 Aoril 1994 

Abstract The one-dimensional contact process is analysed by a cluster approximation. In this 
approach, the hiemchy of rate equations for the densities of finite length empty intends are 
truncated under the assumption that adjacent intervals are not correlated. This assumption yields 
a first-order phase transition from an active statctc the adsorbing state. Despite the apparent 
failure of this approximation in describing the critical behaviour. our approach provides an 
accurate description of the steady-state properties for a significant mge of desorption rates. 
Moreover, the resultingcritical exponents are closer to the simulation values in comparison with 
site mean-field theory. 

The contact process (CP) is an irreversible lattice model involving nearest-neighbour 
interactions only [I-31. This model incorporates spontaneous desorption and nearest- 
neighbour induced adsorption. This stochastic process can be used to mimic epidemic spread 
as well as catalytic reactions. This model belongs to a general class of non-equilibrium 
models exhibiting a continuous phase transition. Near the critical point, the  system^ exhibits 
divergence of spatial and temporal correlations. Such properties, conveniently characterized 
by critical exponents, can be used to.classify different models. The CP belongs to the same 
universality class as Schlogl's first model [4], Reggeon field theory [5], directed percolation 
[6], and the zGB model [7] of catalysis. Field-theoretic renormalization-group studies 
[8, 91 provide considerable understanding of the critical behaviour of the CP. However, 
the best estimates for the characteristic exponents were found numerically by Monte Carlo 
simulations [IO] and by series expansion analysis 111, 121. 

Motivated by incomplete theoretical understanding, we introduce an approximate 
approach to the CP. We study the temporal evolution of the density of empty intervals. 
The corresponding rate equations lead to an infinite hierarchy of equations. By writing the 
density of pairs of neighbouring empty intervals as a product over single interval densities, 
we obtain a closed set of equations. We use the generating function technique to obtain 
the steady-state properties of the system. Within this approximation, the system exhibits 
a discontinuous phase transition from an active state to the empty state. As the system 
approaches the critical point, the relaxation time, associated with the temporal approach to 
the final state, diverges. Consequently, at the critical point, an anomalously slow decay 
towards the final state takes place. We find the corresponding kinetic exponent by scaling 
techniques, as well as by numerical integration of the rate equations. 

We compare the cluster approximation predictions with the results of site mean-field 
theory and with series analysis of this process. Despite the failure to predict a continuous 
transition, the cluster approximation provides a good approximation for the final,density 
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and the empty interval density for a reasonable range of desorption rates. Moreover, the 
resulting estimates for the critical exponents are closer to the numerical values in comparison 
with site mean-field theory. The cluster approach is also applicable to generalizations of 
the contact process, such as the A model and the N3 model. We verify that the resulting 
critical behaviour of these processes is identical with the contact process. Our approach 
is advantageous since it can be improved systematically by considering the evolution of 
higher-order empty interval densities. 

In the CP, a particle desorbs spontaneously with rate A. On the other hand, a particle 
adsorbs at a given site at a rate proportional to the number of neighbouring occupied sites. 
In other words, the adsorption rate at a particular site is given by np/ns, with n, the total 
number of neighbouring sites and np 'the number of neighbouring particles. Since every 
neighbouring particle contributes independently to the adsorption rate, this stochastic process 
can viewed as an interacting particle system with nearest-neighbour interactions only. The 
above process possesses an adsorbing 'vacuum' state: once the system reaches the empty 
state, adsorption becomes impossible. In sufficiently high dimensions, neighbouring sites 
are not correlated, and the density follows from dp/dt = p(1 - p )  - Ap. The adsorption 
term represents the density of vacant sites that neighbour an occupied site. This site mean- 
field theory (Sm) gives a steady-state concentration equal to 1 - A. Hence, at A, = 1 this 
process undergoes a simple continuous transition. 

Figure 1. The contact pmcesa 

We consider the one-dimensional case only (see figure l), where studying the density 
of empty intervals has proven useful in adsorption processes [13], as well as in reaction 
processes [14, 151. We denote by En(t)  the probability that a randomly chosen string of n 
sites is empty (see figure 2). We emphasize the fact that the actual empty string might be 
of length larger than n. Let us also consider R,(t), the probability that a random string of 
length n + 1 has n consecutive vacant sites and a particle at the extreme right-hand site. 
For symmetric processes, such as the CP, R.(t) also represent the probability of finding an 
empty string with a particle at the extreme left. These two interval densities are related by 

Rn = En - &+I or E,  = 1 - RO . . . - Rn-l (1) 

for n > 0. For n = 0, the definition of E, is trivial, leading to the following conditions 
satisfied by the empty interval densities: 

m - 
E ~ = I  or CR,,=I. (2)  

n=O 

The condition for R, is obtained by using (1) and noting that the sum over E, reduces 
to an alternating series. The above interval densities are useful in describing macroscopic 
properties, for example, the concentration is given by p ( t )  = R&). 

We write the rate equations governing En@) by considering the adsorption and the 
desorption processes separately. Adsorption can contribute only to loss of empty intervals. 
Empty intervals of length n can be destroyed when a particle is adsorbed at the edge 
of the interval. This occurs only where the empty interval has an occupied site at its 
edge. By taking into account contributions from adsorption at either boundary, we find that 
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E,,=Prob( 0 . . . . 0) R,=Prob( 0 . . 0 0 )  
L_r__ 

n n 

Figure 2. Empty interval densities. 

dE,,/dtl,, = -R,. Desorption, on the other hand, leads only to creation of empty intervals. 
When a particle desorbs, the two empty intervals it borders create a larger empty interval. 
We define the pair density El,, as the density of two neighbouring empty intervals, with 
lengths at least equal to 1 and m, separated by a single particle. Note that from this definition 
the relation Eo.. = E,,o = ~ R,, is satisfied. In terms of this pair density, the increase 
in the density of empty intervals of length at least n due to desorption is described by 
dE,,/dtl,s =AX;:; El,,-l-l. We then approximate the pair density, E,,,, by the product 
El,m % R,R,/Ro, where the factor 1/Ro ensures the normalization condition EO," = R,, 
Combining contributions from both adsorption q d  desorption yields the following rate 
equation for the empty interval density: 

The steady-state propedes can be obtained by requiring that the time derivative in (3) 
vanishes. We introduce the generating function R(z )  = E,, R,z"/Ro, with R, being the 
steady-state interval densities. Dividing (3) by Ro, summing over all n, and solving the 
resulting quadratic equation yields 

The normalization condition of (2) shows that p = RO = I / R ( Z ) \ ~ = ~  and, consequently, the 
concentration is given by 

For A > A, = 4 the system exhibits a transition to the absorbing state, where the 
concenmtion vanishes. The nature of this transition is discontinuous, while for the actual 
CP, the transition is continuous. For the CP, the approach to the critical density is an algebraic 
one, 

P - PC - (A, - A)'. (6) 
Note that while for a continuous transition to a vacuum state one bas pc = 0, the critical 
density'of the cluster approximation is finite. pc = 4. Extensive power-series studies suggest 
p 2 0.277, and A, 10.3032 111, 121. The corresponding values obtained by the cluster 
approximation, p = f and h, = $, are closer than the SMF values @ = A, = 1. While 
the critical point depends heavily on the microscopic definition of the process, the critical 
exponents are universal. Applying the cluster approximation to variants of the CP always 
yields 6 = f. 

In figure 3, we plot the cluster approximation density versus the series study density. For 
desorption rates 5 0.2 both curves are practically identical and, for example, at A = 0.2 the 
relative difference is less than 0.5%. We conclude that despite the failure near the transition 
point, the cluster approximation is useful in describing the process for a substantial dynamic 
range. Another way to determine the accuracy of the approximation is by expanding (5) as 
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Figure 3. The first-order cluster approximation density (dashed curve) and the second-order 
cluster approximation (broken curve) versus the acNal CP density (full curve). The latter density 
represent the [12.121 Pad6 approximt obtained from the perturbation study of [12]. 

a power series in A", and comparing to the coefficients, obtained by the series expansion 
study [12]. We find that both expansions are identical to the thud order, 

1 - A  - A 2  -w3 -5h4 f O(As) 
1 - A  - A* - U 3  - 4 f A 4 + 0 ( A 5 )  

CA 

CP. 
(7) 

Since R, is of order A", we expect similar correspondence between the approximate interval 
density from OUT rate equations and the actual contact process densities. To test this, we 
have performed a Monte Carlo simulation with lo5 particles at A = 0.2. Indeed, the average 
over 200 different realizations yields values for R,, that agree with the approximate density 
to within OS%, for n = 0, 1,2,3. The quality of the approximation gradually decreases as 
n increases and, for example, for n = 4 the discrepancy is 4%. 

The cluster approximation can be improved systematically by taking into account higher- 
order interval densities. This leads to an infinite hierarchy of equations that is intractable 
analytically. Nevertheless, it is possible to consider successfully an approximation to them 
[16]. We considered the equations goveming the evolution of the pair density El,,,,, and 
obtained a closed form by writing the third-order interval density as a product over lower- 
order densities. We solved these equations numerically using the firstader approximation 
as the zeroth-order solution modulated by a power series in A. The solution can now be 
obtained to an arbitrary order in A. The resulting expansion of the density is exact to fourth 
order in A, while the first-order CA was correct to third order in A. In figure 3, the Pade 
approximant [28, 281, based on the 56th-order expansion of p(A) is closer to the actual 
density in comparison with the first-order approximation. Moreover, the approximate value 
for the transition is A, 2 0.2929. Our analysis of the curve also suggests that the transition 
is continuous in nature. 

The interval density also exhibits an interesting critical behaviour. By expanding the 
generating function of (4), one finds that R, = pAn(2n)!/n!(n + l)! for A 6 A,. This 
expression shows that for A c A, the interval density depends exponentially on the interval 
length, 

~(1) = 

R, - n-3/2 exp(-4An) A << 1 (8) 
where A = A, -A.  The Stirling formula was used to obtain the above form of the interval 
density. At the critical point, power-law decay is recovered, R. - n-3/z. 
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These static properties ‘are closely related to the kinetics of the system. Far from the 
critical point, the density rapidly relaxest0 its steady-state value from any initial conditions. 
As the system approaches the critical point, the relaxation time diverges and a power-law 
decay of the concentration takes place. We thus expect that for sufficiently large times and 
close enough to the critical point, the temporal approach to the final state is given by the 
scaling form [I l ,  171 

(9) p - pc - t-’@(At’’”) . 
In other words, the critical exponent S characterizes the critical kinetics, while the exponent 
v characterizes the sub-critical relaxation time. The above scaling form should match 
the steady-state form of (6) at large times and hence we conclude that @ ( x )  - xp for 
x >> 1. To cancel the temporal dependence, the scaling relation fi  = Sv must be satisfied. 
Furthermore, equation (8) indicates that the relaxation length associated with the steady- 
state interval density diverges as I / A  as the system approaches the critical point. Thus, 
it is natural to assume that R.(t) depends on time through a rescaled size, n + ntP,  as 
well as a rescaled adsorption rate. Noting that Ro = p, we postulate the following scaling 
behaviour for R,, (t): 

R,,(I) - 4(At1 ’” ,nCm) .  (10) 

On the other hand, (8) indicates that the steady-state density depends on the size and the rate 
only through the variable nA.  Hence, $(x ,  y) - $(xy ) ,  and by eliminating the temporal 
dependence we find the scaling relation a!v = 1. 

Thus far, our scaling analysis involved matching the anticipated kinetic behaviour to 
the exact steady-state properties. To determine the critical temporal decay, p - pc - t-’, 
we study the rate equations at A, = i. Using the duality relations between E, and R, (see 
equation (I)), the rate equations for A =A, can be rewritten in terms of Rn only, 

To analyse this equation by scaling techniques, we match the leading asymptotic. terms 
in both sides of the above equation. The left-hand side is governed by n terms of order 
R,. Hence, by taking into account the time derivative, we conclude that the left-hand 
side is proportional to nRJt .  The right-hand side is dominated by the first few terms in 
the expansion, namely 1 << n and n - I << n. Therefore, we approximate the sum by 
2R,,(Ro + RI + . . .)/Ro = 2Rn/Ro, using the normalization condition of (2). Finally, we 
write the resulting expression R, (1 - 1/2Ro(t)) in terms of the concentration 

We conclude that nr-’ - tu-’ - t-’, or equivalently a! + 6 = 1. The three scaling 
relations yield the following exponents, 6 = 4, v = $ and a! = 2 3‘  Numerical integration 
of the rate equation at A = A, confirms the scaling prediction for 6 (see figure 4). In table 
1, we compare the exponents, that result from our cluster approximation (CA), with the 
corresponding series expansion and the SMF values. We conclude that the CA exponents 
provide significant improvement in comparison with those from SMF. 

Recently, several variants of the CP where introduced and it was shown that they belong 
to the same universality class as the original model.’ In these models, the adsorption process 
is modified while the desorption process remains unchanged. The adsorption rate is set 
to 8/2 if only one neighbouring site is occupied, while the rate remains at unity in the 
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F i w  4. The critical approach towards lhe steady state. Numeric solution to the rate equations 
(open circles) for the case A = .b = is p~otted. F O ~  comparison a tine of slope -4 is also 
shown (full curve). 

Table 1. Static and critical decay exponents obtained by series studies (cP), cluster 
approximations (CA) and site mean field (SMF). 

” 
- 

B S  

CP 0.277 0.160 1.735 

case when both neighbouring sites are occupied. The empty interval method can be easily 
generalized to this case and we merely quote the resulting subcritical steady-state density: 

For the basic CP, 0 = 1, we recover (5). Clearly, the discontinuous nature of the transition 
is independent of the microscopic details of the model and the exponent ,8 = is indeed 
robust. The critical point however, depends on B and can be found by equating the square 
root in (13) to zero. If the adsorption rates are independent of the number of neighbouring 
particles, 0 = 2, the predicted critical point is hc Z 0.4608, while series studies yield 
X, 2 0.574 for this so-called A model. In the case where 0 = 4 (the N3 model), the 
critical point is A, = 0.1366, while series studies yield A, = 0.162. For the general e case, 
the cluster approach yields less accurate estimates for the concentration than for basic CP. 
Recently, Katori and Konno obtained upper and lower bounds for the density, and (13) 
agrees with the lower bound estimate [18, 191. 

In summary, we have presented an approximate approach to the contact process. Based 
on the assumption that neighbouring empty intervals are not correlated we solved for the 
steady-state properties. In addition, the kinetic approach towards the steady state was found 
by scaling techniques. The above approximation is valid for a significant subcritical range. 
The cluster approximation predicts a discontinuous transition but gives improved exponents 
in comparison with simple site mean-field theory. 

The cluster approximation can be systematically improved by considering higher-order 
interval densities. Indeed, our preliminary results indicate that the second-order cluster 
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approximation yields a continuous phase transition. Moreover, the approximation appears 
to be valid over a significantly larger range of desorption rates. 

We are thankful to R Dickman and S Redner for useful discussions. We are also grateful 
to M Katori for pointing out the equidence between the cluster approximation aid the 
Holley-Liggett argument in the steady state. We gratefully acknowledge ARO grant no 
DAAH04-93-G-0021, NSF grant no DMR-9219845, and to the donors of The Petroleum 
Research Fund, administered by the American Chemical Society for partial support of this 
research. 
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